第二章 资金时间价值与风险分析 1]aya(
资金时间价值没有风险和通货膨胀下的社会下平均资金利润率 \,G19o}`Es
+WvW#wpH
复利终值和现值 'EB5#
s5ILl wr
复利终值=现值*复利终值系数 @9g!5dcT
lgC^32y
复利现值=终值*复利现值系数 -];Hb'M.!e
,%KMi-w]q,
年金就是等额+定期+系列 mFyYn,Mu|
{
/Gm|*e{
年金和复利的关系,年金是复利和 UO'X"`
+}C M2>M
年金的形式:普通(期未)、即付(期初)、递延(有间隔期)、永续(无终值) Q[bIkvr|
:Ek3]`q#
普通年金终值=年金*年金终值系数 ;_1> nXh
2vW@d[<J
偿债基金年金=终值/年金终值系数 !<^`Sx/+
30h1)nQ$h}
普通年金现值=年金*年金现值系数 ;{rl
Y>
pXe]hnY
资本回收额=年金现值/年金现值系数 NTSKmCvQG
Rp.FG
即付年金终值=年金*普通年金终值系数*(1+i) e{,[\7nF
e0<L^|S
即付年金现值=年金*即付年金现价值系数(期数减1,系数加1)\ mh~n#bah
fG /wU$B
递延年金是普通年金的特殊形式 "HbrYYRb'
v?h8-yed
三个公式不需要记,我是这样理解的! 7
P]Sc
#J4,mFMr
想想和普通和即付的区别,现值是期数减1,所以咱们根据题目提示可以得出第5年开始,10年后,其实就是15-1=14年,好了,这是第一步(年金部分),接着就要算前五年的间隔期(4个)。经过我的讲解你明白啦,如果不明白,那你就把普通和即付年金之间的关系搞明白吧!最准确的理解:如为年初 往期减两年,如为年未,往期减一年! @3>nVa
^Cn_
ODjo
折现率 wqp(E+&
.w)T2(
内插法的运用 1I U*:Z;Rz
+isaqfy/
利率差之比=系数差之比;年限差之比=系数差之比 U=UnE"h
++0xa%:
名义利率(多次);实际利率(一次) e7gWz~
I\ y>I?X
风险分析 B9h>
3WF6bJN
风险分类: d*<